“倒塌的過程,”張靜怡也沉思著說:“就象是人死了,有機分子開始分解,重新物化,迴歸自然,成為基本粒子……”


    長久以來,兩個基本的信念一直是科學家們從事研究活動的內在動力:1、外部世界以其固有的規律獨立於我們而存在,科學的目的正在於如實地描述這個世界;2、事物的產生總是有確定原因的,科學理論就在於追尋自然事物所服從的因果律,以便對自然過程作充分解釋和精確預測。


    上述兩個基本信念由於科學家們在宏觀領域內創造的偉大奇跡而受到鼓舞。然而,量子力學的出現卻顛覆了這兩個信念,它公然宣稱:一個微觀事件的“發生”直接依賴於我們對它的觀測,而我們對微觀世界的解釋和預測僅限於概率性。量子力學無論在理論層麵還是在應用層麵都取得了巨大的成功,然而量子力學對亞原子世界的解釋是最終的嗎?20世紀最偉大的科學家愛因斯坦率先對此表示質疑,從而在他與量子物理學家之間引爆了一場著名的爭論。這場爭論的哲學意義甚至超過了其物理學意義,值得今天的人們繼續迴味與反思。


    “張司令官說得太對了!”瓊斯露露說:“這就是我要告訴你們的,生命在宇宙中的地位並不特殊,它隻是自然演化過程中的最後一環。”


    “蟲洞”的概念最早於1916年由奧地利物理學家路德維希·弗萊姆提出,並於20世紀30年代由愛因斯坦及納森·羅森加以完善,因此,“蟲洞”又被稱作“愛因斯坦—羅森橋”。一般情況下,人們口中的“蟲洞”是“時空蟲洞”的簡稱,它被認為是宇宙中可能存在的“捷徑”,物體通過這條捷徑可以在瞬間進行時空轉移。但愛因斯坦本人並不認為“蟲洞”是客觀存在的,所以,“蟲洞”在後來的幾十年中,都被認為隻是個“數學伎倆”。


    1963年,新西蘭數學家羅伊·克爾提出假設,使得“蟲洞”的存在重新獲得了理論支持。和人類一樣,恆星也會經曆生老病死的過程,克爾認為,如果恆星在接近死亡時能夠保持旋轉,就會形成我們在電影中看到的“動態黑洞”。當我們像電影中那樣沿著旋轉軸心將物體發射進入後,若是能夠突破黑洞中心的重力場極限,就會進入所謂的“鏡像宇宙”。《星際穿越》中的宇航員庫珀在黑洞中所處的“超維度”空間,其實就可以被看作是對“鏡像宇宙”的一種解讀。從宇宙進入“鏡像宇宙”,本身就是一次“時空穿越”。


    “為什麽是最後一環,不能再進一步進化了?”


    “銀河係蟲洞說”源自在暗物質研究上取得的突破。暗物質是指不與電磁力產生作用、無法通過電磁波的觀測進行研究的物質。與“蟲洞”不同的是,人們已經通過引力效應證實了宇宙中有大量暗物質存在。的裏雅斯特國際高等研究院課題組在2013年繪製了一份非常詳細的銀河係暗物質分布圖,將其與最新研究得出的宇宙大爆炸模型結合後,發現銀河係中不僅具備存在“蟲洞”的條件,甚至整個銀河係都可能是個巨大的“蟲洞”。


    瓊斯露露說:“可能你們沒注意到,搭建過程到了最後,我已經無法再往上加任何一小塊積木了。這就說明,這個過程是有極限的,不可能永遠搭建下去!”


    近距離伽馬暴可能滅絕任何比微生物更加複雜的生命形式。由此,兩位天文學家聲稱,隻有在大爆炸發生50億年之後,隻有在10%的星係當中,才有可能出現類似地球上這樣的複雜生命。


    宇宙或許比先前人們想象的要更加孤單。兩位天體物理學家聲稱,在可觀測宇宙預計約1000億個星係當中,僅有十分之一能夠供養類似地球上這樣的複雜生命。而在其他任何地方,被稱為伽馬暴的恆星爆炸會經常性地清除任何比微生物更加複雜的生命形式。兩位科學家說,這些的爆炸還使得宇宙在大爆炸後數十億年的時間裏,無法演化出任何複雜的生命。


    科學家一直在思考這樣一個問題,伽馬暴有沒有可能近距離擊中地球。這種現象是1967年被設計用來監測核武器試驗的人造衛星發現的,目前大約每天能夠檢測到一例。伽馬暴可以分為兩類。短伽馬暴持續時間不超過一兩秒鍾;它們很可能是兩顆中子星或者黑洞合二為一的時候發生的。長伽馬暴可以持續數十秒鍾,是大質量恆星耗盡燃料後坍縮爆炸時發生的。長伽馬暴比短伽馬暴更罕見,但釋放的能量要高大約100倍。長伽馬暴在短時間內發出的伽馬射線,可以比全宇宙都要明亮。


    持續數秒的高能輻射本身,並不會消滅附近一顆行星上的生命。相反,如果伽馬暴距離足夠近,它產生的伽馬射線就有可能觸發一連串化學反應,摧毀這顆行星大氣中的臭氧層。沒有了這把保護傘,這顆行星的“太陽”發出的致命紫外線就將直射行星地表,長達數月甚至數年——足以導致一場大滅絕。


    這樣的事件發生的可能性有多高?在即將發表在《物理評論快報》(physical review letters)上的一篇論文中,以色列希伯萊大學的理論天體物理學家斯維·皮蘭(tsvi piran)和西班牙巴塞羅納大學的理論天體物理學家保羅·希梅內斯(raul jimenez)探討了這一災難性的場景。


    天體物理學家一度認為,伽馬暴在星係中氣體正迅速坍縮形成恆星的區域裏最為常見。但最近的數據顯示,實際情況要複雜許多:長伽馬暴主要發生在“金屬豐度”較低的恆星形成區域——所謂“金屬豐度”,是指比氫和氦更重的所有元素(天文學家所說的“金屬”)在物質原子中所占的比例。


    利用我們銀河係中的平均金屬豐度和恆星的大致分布,皮蘭和希梅內斯估算了銀河係內兩類伽馬暴的發生幾率。他們發現,能量更高的長伽馬暴可以說是真正的殺手,地球在過去10億年間暴露在一場致命伽馬暴中的幾率約為50%。皮蘭指出,一些天體物理學家已經提出,可能正是伽馬暴導致了奧陶紀大滅絕——這場發生地4.5億年前的全球災變,消滅了地球上80%的生物物種。


    接下來,這兩位科學家估算了銀河係不同區域內一顆行星被伽馬暴“炙烤”的情形。他們發現,由於銀河係中心恆星密度極高,距離銀心6500光年以內的行星在過去10億年間遭受致命伽馬暴襲擊的幾率高達95%以上。他們總結說,複雜生命通常隻可能生存於大型星係的外圍。(我們自己的太陽係距離銀心大約2.7萬光年。)


    其他星係的情況更不樂觀。與銀河係相比,大多數星係都更小,金屬豐度也更低。因此,兩位科學家指出,90%的星係裏長伽馬暴都太多,導致生命無法持續。不僅如此,在大爆炸後大約50億年之內,所有星係都是如此,因此長伽馬暴會導致宇宙中不可能存在任何生命。


    90%的星係都是不毛之地嗎?美國沃西本恩大學的物理學家布萊恩·托馬斯(brian thomas)評論道,這話說得可能有點太過。他指出,皮蘭和希梅內斯所說的伽馬射線照射確實會造成不小的破壞,但不太可能消滅所有的微生物。“細菌和低等生命當然有可能從這樣的事件中存活下來,”皮蘭承認,“但對於更複雜的生命來說,伽馬射線照射確實就像按下了重啟按鈕。你必須一切重頭開始。”


    皮蘭說,他們的分析對於在其他行星上搜尋生命可能具有現實意義。幾十年來,seti研究所的科學家一直在用射電望遠鏡,搜尋遙遠恆星周圍的行星上可能存在的智慧生命發出的信號。不過,seti的科學家主要搜尋的都是銀河係中心的方向,因為那裏的恆星更加密集。而那裏正是伽馬射線導致智慧生命無法生存的區域。皮蘭說,“或許我們應該朝完全相反的方向去尋找。”


    “你的意思是,從無機化合物到有機化合物直至生命的這個過程,是有一定限製的?”


    但人類發現dna後就信心勃勃的想要操控生命,自己當上帝了。這些年也確實搞出來一些成就比如轉基因農作物。但是因對生命控製的複雜性,超過了當今電腦的模擬能力,結果到現在為止對dna的原理依舊知其然不知其所以然。也就是說人類對dna的研究還處在一個原始階段也就是收集數據的階段,然後才是總結規律,發現原因最後才是利用。目前人類連第一步都沒有走完就想創造生命了。我們知道人之間的差異是由於dna的不同導致,但是我們不知道為什麽dna不同會導致差異。打個比方,你把電腦交個一個原始人,他可以把電腦全部拆開但還是搞不懂電腦是怎麽工作的。


    “什麽是宇宙規律?”貞姐總是不服氣,搶白道。

章節目錄

閱讀記錄

人世天劫所有內容均來自互聯網,繁體小說網隻為原作者冬夜之狼的小說進行宣傳。歡迎各位書友支持冬夜之狼並收藏人世天劫最新章節